Package: amelie 0.2.1

amelie: Anomaly Detection with Normal Probability Functions

Implements anomaly detection as binary classification for cross-sectional data. Uses maximum likelihood estimates and normal probability functions to classify observations as anomalous. The method is presented in the following lecture from the Machine Learning course by Andrew Ng: <https://www.coursera.org/learn/machine-learning/lecture/C8IJp/algorithm/>, and is also described in: Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, Jaideep Srivastava (2003) <doi:10.1137/1.9781611972733.3>.

Authors:Dmitriy Bolotov [aut, cre]

amelie_0.2.1.tar.gz
amelie_0.2.1.zip(r-4.5)amelie_0.2.1.zip(r-4.4)amelie_0.2.1.zip(r-4.3)
amelie_0.2.1.tgz(r-4.4-any)amelie_0.2.1.tgz(r-4.3-any)
amelie_0.2.1.tar.gz(r-4.5-noble)amelie_0.2.1.tar.gz(r-4.4-noble)
amelie_0.2.1.tgz(r-4.4-emscripten)amelie_0.2.1.tgz(r-4.3-emscripten)
amelie.pdf |amelie.html
amelie/json (API)
NEWS

# Install 'amelie' in R:
install.packages('amelie', repos = c('https://dbolotov.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/dbolotov/amelie/issues

On CRAN:

anomaly-detection

3.70 score 6 scripts 266 downloads 1 mentions 2 exports 0 dependencies

Last updated 6 years agofrom:82d3d7bdc6. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-winOKNov 17 2024
R-4.5-linuxOKNov 17 2024
R-4.4-winOKNov 17 2024
R-4.4-macOKNov 17 2024
R-4.3-winOKNov 17 2024
R-4.3-macOKNov 17 2024

Exports:adpdfunc

Dependencies:

Amelie Introduction

Rendered fromamelie-introduction.Rmdusingknitr::rmarkdownon Nov 17 2024.

Last update: 2018-03-23
Started: 2018-02-19